不少孩子在写数学试卷时都会遇到一些问题,在拿到题目时,不知道从何下手,从哪寻找突破口。做题速度太慢,后面的大题没有时间思考。造成这些问题的原因,除了知识没有掌握牢、平时做题太少,还有很重要的一点就是平时没有思考归纳出一些答题的技巧与方法,造成了答题速度慢,解题方法单一、有效性差,自然在考试中也就很难能拿到高分。
高中数学提分技巧:
选择题答题技巧如下:
1、排除法或代入法
可以选择排除法或者代入法,当从正面解答不能很快得出答案或者确定答案是否正确时,可以通过排除法,排除其他选项,得到正确答案。排除法可以与代入法相互结合,将4个选项的答案,逐一带入到题目中验证答案。
2、特例法
有些选择题涉及的数学问题具有一般性,这类选择题要严格推证比较困难,此时可以从一般性问题转化到特殊性问题上来,通过取适合条件的特殊值、特殊图形、特殊位置等进行分析,往往能简缩思维过程、降低难度而迅速得解。
3、极限法
当一个变量无限接近一个定量,则变量可看作此定量。对于某些选择题,若能恰当运用极限法,则往往可使过程简单明快。
填空题答题技巧:
1、特殊化法
当填空题的结论唯一或题设条件中提供的信息暗示答案是一个定值时,而已知条件中含有某些不确定的量,可以将题中变化的不定量选取一些符合条件的恰当特殊值(或特殊函数,或特殊角,图形特殊位置,特殊点,特殊方程,特殊模型等)进行处理,从而得出探求的结论。这样可大大地简化推理、论证的过程。
2、数形结合法
将抽象、复杂的数量关系,通过图像直观揭示出来。对于一些含有几何背景的填空题,若能数中思形,以形助数,则往往可以简捷地解决问题,得出正确的结果。
3、等价转化法
通过“化复杂为简单,化陌生为熟悉”,将问题等价转化成便于解决的问题,从而得出正确的结果。选择题、填空题在考试时都是只要结果,不看过程。因此,可以充分利用题干和选项提供的信息作出判断,先定性后定量,先特殊后推理,先间接后直接,先排除后求解,一定要小题巧解,避免小题大做,浪费太多时间在前面的小题上。
解答题答题技巧:
1、解三角函数问题
解题路线图,化简变形;用余弦定理转化为边的关系;变形证明。用余弦定理表示角;用基本不等式求范围;确定角的取值范围。定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。求结果。
2、数列的通项、求和问题
解题路线图,先求某一项,或者找到数列的关系式。求通项公式。求数列和通式。构建答题模板,找递推:根据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。求通项:根据数列递推公式转化为等差或等比数列求通项公式,或利用累加法或累乘法求通项公式。定方法:根据数列表达式的结构特征确定求和方法,如公式法、裂项相消法、错位相减法、分组法等。写步骤:规范写出求和步骤。再反思:反思回顾,查看关键点、易错点及解题规范。